LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034
M.Sc. DEGREE EXAMINATION - PHYSICS
FIRST SEMESTER – NOVEMBER 2013
PH 1817 - CLASSICAL MECHANICS
Date : 05/11/2013 Dept. No. Max. : 100 Marks Time : 1:00 - 4:00
PART - A
Answer ALL questions (10 x 2 = 20)
 01. What is meant by generalized coordinates? 02. Write the Lagrangian for a free particle in cylindrical coordinates. 03. Show that the kinetic energy T for a torque free motion of rigid body is a constant. 04. When L = r x p and N = r x F, show that N = dL/dt 05. What is a Coroilis force ? Give one example. 06. State the principle of least action. 07. Show that the generating function F₁ = q Q generates a transformation that interchanges the momenta and coordinates. 08. Show that [q_i,p_j] q,p = 0 for i≠j and 1 for i=j. 09. Show that the Hamilton's principal function S differs from the indefinite time integral of the Lagrangian by a constant.
10. What is meant by secular equation?
PART - B $(4 \times 7.5 - 20)$
 Show that the charged particle in an electromagnetic field has a potential U = qφ - qA.v Solve the Euler's equations of motion for a symmetric top I₁ = I₂ ≠ I₃ with no torque acting on it. Using the basic definition of the Hamiltonian H(q,p,t), obtain Hamilton's canonical equations of motion
 14. Show that the transformation Q=q +i p and P = Q - i p is not canonical. Suppose the size of the units used to measure the coordinates and momentum are changed to Q' and P' such that Q' = μQ and P' = υP then show the transformation equations are canonical. 15. Solve by the Hamilton-Jacobi method the motion of a particle in a plane under the action of a central potential V(r) to obtain the equation of orbit.
PART - C
Answer any FOUR questions (4 x 12.5 = 50)
 16. a) A particle of mass m is attached to the mid point of a weightless rod of length L. The ends of the rod are constrained to move along the x and y axes without friction. Write the Lagrangian and solve for the equation of motion assuming g acts in the negative y direction. (7.5) b) A mass m is attached to a spring of stiffness constant k and capable of motion along the x direction. Using Hamilton's canonical equations find the equation of motion for the mass. (5) 17. a) Show that Q = log(sin p) /q and P = q cot p is canonical using Hamilton's canonical equations. (7.5) b) Show that the transformation given by 2P = p² + a² and Q = tap⁻¹ g/p is canonical (5)
0. Show that the transformation given by 21 - p + q and Q - tail q/p is calolitedi. (3)

- 18. Set up the Hamiltonian for the one dimensional harmonic oscillator and using the method of separation of variables evaluate S and hence obtain the solution for the oscillators $(2\alpha/k)^{\frac{1}{2}}\cos \omega(t+\beta)$. Using the initial conditions at t = 0 q = q₀, p = p₀ and $\beta = 0$ prove that S = $\int L dt$ for the linear harmonic oscillator.
- 19. Set up the Lagrangian for the linear triatomic molecule and solve for the normal modes of vibrations.
- 20. Write notes on any Two of the following

i) Lagrange's equation from the variational principle. ii)Theory of Hamilton –Jacobi method.

iii) Invariance of Poisson's brackets in a canonical transformation.
